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Abstract
Most of the existing object detection methods generate poor glass detection results, due to the fact that the transparent glass
shares the same appearance with arbitrary objects behind it in an image. Different from traditional deep learning-based wisdoms
that simply use the object boundary as an auxiliary supervision, we exploit label decoupling to decompose the original labelled
ground-truth (GT) map into an interior-diffusion map and a boundary-diffusion map. The GT map in collaboration with the two
newly generated maps breaks the imbalanced distribution of the object boundary, leading to improved glass detection quality.
We have three key contributions to solve the transparent glass detection problem: (1) We propose a three-stream neural network
(call GlassNet for short) to fully absorb beneficial features in the three maps. (2) We design a multi-scale interactive dilation
module to explore a wider range of contextual information. (3) We develop an attention-based boundary-aware feature Mosaic
module to integrate multi-modal information. Extensive experiments on the benchmark dataset exhibit clear improvements of
our method over SOTAs, in terms of both the overall glass detection accuracy and boundary clearness.

Keywords: image processing, image and video processing, image segmentation, image and video processing, computer vision–
shape recognition, methods and applications
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1. Introduction

Transparent glass is widely used in our daily life, such as glass win-
dows/doors and many other glass products. However, it commonly
hinders many vision-related tasks like depth prediction, instance
segmentation, reflection removal, object detection and so forth. For
example, when an intelligent robot or an unmanned plane operates
automatically, they should avoid crashing into the glass. It is, there-
fore, essential to accurately detect the overall glass with its boundary
clearly from single images. Unfortunately, most of the existing ob-
ject detection methods generate inaccurate or even wrong regions
of the glass with fuzzy boundaries, due to the fact that the glass
is transparent. That means, a glass region nearly has no fixed pat-
terns; the pattern is determined by the arbitrarily appeared object
behind the glass. Therefore, unlike many other objects, which have
relatively fixed patterns to detect more easily, the same appearance
between the glass region and the objects behind it makes existing
object detection methods work ineffectively. We list three represen-

tative detection approaches in Figure 1, i.e. DANet [FLT*19] for
semantic segmentation, edge guidance network (EGNet) [ZLF*19]
for edge-guided salient object detection (SOD), glass detection net-
work (GDNet) [MYW*20] for glass detection as well as our pro-
posed GlassNet. As shown, DANet wrongly considers the back-
ground as the glass; EGNet also yields wrong detection regions;
although GDNet [MYW*20] pioneers to automatically detect glass
from single images, it leads to inaccurate glass boundaries; while
the proposed network operates smoothly on these two challenging
images: The glass is exactly detected with its clearer boundaries
by GlassNet.

Intuitively, like other vision tasks, a straightforward solution to
enhance the glass detection ability, is to use boundaries of the glass
as auxiliary supervision. However, in an image with glass in it,
the glass-boundary pixels are much rarer than other pixels. Such
a very unbalanced distribution of the glass-boundary pixels will in-
troduce large prediction errors around the glass boundary. To this

© 2022 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

377

https://orcid.org/0000-0002-9790-4262
https://orcid.org/0000-0003-0429-490X


378 C. Zheng et al. / EG LaTeX Author Guidelines

Figure 1: GlassNet compares with its competitors on the public GDD dataset [MYW*20]. Current vision systems sense the presence of glass
poorly, since a glass region has no fixed patterns (e.g. various objects will appear behind the glass, resulting in the same appearance of the
glass and the objects behind the glass in an image). DANet commonly fails to detect the glass; glass detection network (GDNet) leads to
inaccurate glass boundaries; edge guidance network (EGNet) yields wrong detection regions; while the proposed GlassNet operates smoothly
on the two challenging images, where the glass is exactly detected and its boundaries are clearer. Please note that the white region corresponds
to the detected glass, and the black region means the detected background.

end, we arise an intriguing question that if the glass boundary dif-
fuses itself into the glass’s interior and the interior diffuses itself
from its centre to boundary, a deep network can better focus on re-
gions around the glass boundary and concentrate on centre areas
of the glass object? To answer it, (1) we first use label decoupling
(LD) [WWW*20] to explicitly decompose the original glass map
into an interior-diffusion map and a boundary-diffusion map, where
the first map is concentrated in the centre of glass objects and the
second map focuses on regions around glass boundaries; (2) based
on the three different types of label information, we propose a three-
stream neural network for robust glass detection (GlassNet). For the
interior-diffusion stream, we only use the highest two-level image
features with rich semantic information to locate the glass region;
for the boundary-diffusion stream, all levels of information are ag-
gregated to make the detection result more accurate; for the original
glass stream, we utilize the lowest two-level image features with
more detailed information and highest-level image features to pre-
dict the final glass maps.

Meanwhile, we design a multi-scale interactive dilation (MID)
module with a large receiving field to integrate the features from
adjacent levels. And we propose an attention-based boundary fusion
module to merge the boundary and glass features. We have tested all
the approaches on the benchmark dataset GDD [MYW*20] and our
GlassNet achieves a very competitive performance. In summary, our
contributions are mainly four-fold:

1. We observe that in an image with glass in it, the glass-boundary
pixels are much rarer than other pixels. Such a very imbalanced
distribution of the glass-boundary pixels introduces large pre-
diction errors around the glass boundary when performing ob-
ject detection. To break such an imbalanced distribution be-
tween glass-boundary pixels and non-glass-boundary pixels, we
utilize the LD procedure to decompose a glass label into an
interior-diffusion map and a boundary-diffusion map to super-
vise the network training.

2. We propose a three-stream network, called GlassNet, which is
enhanced by LD features to produce more precise glass maps.

3. We design a MID module to explore a wider range of contex-
tual information and an attention-based boundary-aware feature
Mosaic (BFM) module to integrate multi-modal information.

4. Extensive experiments on the benchmark dataset exhibit clear
improvements of our method over SOTAs, in terms of both the
overall glass detection accuracy and boundary clearness.

2. Related Work

In the past 2 years, glass detection had begun to attract much at-
tention, but little work has been done on this topic. In this section,
we briefly introduce the methods used in glass detection and the
methods that can assist in solving this problem from relevant fields,
including semantic segmentation, SOD and mirror detection.

Semantic segmentation. Semantic segmentation is a key prob-
lem in the computer vision community, which aims at assigning
semantic class labels to each pixel in the given image. With the
development of deep neural networks, an end-to-end training
architecture method called fully convolutional networks (FCNs)
[LSD15] has been proposed to solve this problem, which uses
multi-scale context fusion to achieve high segmentation perfor-
mance. However, the fixed geometric structures of convolution
operations in those deep neural networks make the pixels capture lo-
cal information and short-range contextual information inherently.
Thus, Chen et al. [CPK*18] introduce an atrous spatial pyramid
pooling module (ASPP) with multi-scale dilation convolutions for
contextual information aggregation. Zhao et al. [ZSQ*17] further
propose PSPNet to capture a wider range of contextual information
by using a pooling operation and the pyramid structure. In addition,
the encoder–decoder structures, like U-Net [RFB15], are widely
used to fuse middle- and high-level semantic features.

However, the dilated convolution-based methods [DJS*18,
CPSA17] fail to capture global contextual information and cause
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sparse local information due to their structures. The pool-based
methods [ZDS*18, ZTZ*17] aggregate context information in a
non-adaptive way to make image pixels use the homogeneous con-
textual information. Therefore, Wang et al. [WGGH18] introduce
non-local networks utilizing a self-attention mechanism [VSP*17,
CDL16], which calculate the relationship between each pixel and all
other pixels in an image, thus harvesting global contextual informa-
tion. To solve the problem that self-attention-based methods have
high computation complexity and occupy a huge amount of GPU
memory, Huang et al. [HWH*19] and Fu et al. [FLT*19], respec-
tively, propose CCNet and DANet to reduce the parameters. After
that, Carion et al. [CMS*20] adopt transformer that is widely used
in the NLP field, which replaces the convolution layer with the self-
attention layer, for semantic segmentation.

SOD. SOD aims at identifying the most visually distinctive ob-
jects or regions in an image, which is widely applied as a pre-
processing procedure for downstream tasks [XWL*18, 2021]. Early
SOD methods are mainly based on hand-crafted features (e.g.
colour, texture and contrast) to segment salient objects in the scene
[YZL*13, ZLWS14, SB15, ZSL*15]. Recent convolutional neural
networks (CNNs) [KSH12, SZ14, HZRS16] are extensively used
and achieve very remarkable performance.

Ronneberger et al. [RFB15] propose U-Net, a representative net-
work widely used in a variety of graphics processing tasks, which
effectively generates more accurate detection results by using a skip
connection operation and an encoder–decoder structure. Based on
U-Net, many other methods adopt different decoders, combined
with multi-level CNN features and have achieved remarkable per-
formance. Zhang et al. [ZWL*17] introduce an AmuletNet for SOD
that aggregates an another-level convolutional feature at each dif-
ferent level. Zhang et al. [ZWQ*18] add an attention module to the
decoder, which can guide the network to selectively integrate multi-
level features. Zhao et al. [ZW19] propose a pyramid feature at-
tention network (PFAN) to enhance the high-level context features
and the low-level spatial structural features. Pang et al. [PZZL20]
propose aggregate interactionmodules to integrate the features from
adjacent levels by using a more complex decoder structure. Besides,
more efforts utilize boundary information to improve the accuracy
of saliency maps. Zhao et al. [ZLF*19] focus on the complemen-
tarity between salient edge information and salient object informa-
tion and present an EGNet for SOD. Zhou et al. [ZXL*20] anal-
yse the correlation between saliency and boundary and introduce
an interactive two-stream decoder to explore multiple cues, includ-
ing saliency, boundary and their correlation. Furthermore, Wei et al.
[WWW*20] propose a label decoupling framework (LDF) that ex-
ploits more boundary information to enhance SOD performance.

Mirror detection. Similar to other image detection tasks, mirror
detection aims at segmenting mirror regions in single images. Yang
et al. [YMX*19] make the first attempt to automatically detect mir-
rors and proposeMirrorNet by utilizing inconsistencies between the
inside and outside of the mirror region, called contextual contrasted
features, to segment mirrors from the real scene. The reason is the
performance difference between the mirror region and other non-
mirror regions. The mirror region reflects the scene in front of the
mirror, which makes the semantic and low-level discontinuities of-
ten occur at the boundary of the mirror. But not all mirrors have
a great distinction between inside and outside. Some of them have

little contextual contrasted information. Thus, Lin et al. [LWL20]
introduce a model to progressively learn the content similarity be-
tween the inside and outside of the mirror while explicitly detecting
the mirror boundaries. The scenes reflected by a mirror often exhibit
similarities to scenes outside the mirror, which can aid to detect mir-
ror regions by enlarging the receptive fields of the convolution op-
eration. Glass detection is very similar to mirror detection that also
has the problem of similar foreground and background.

Transparent object detection (TOD). Similar to glass detec-
tion, TOD aims to segment transparent object regions in single im-
ages. Xie et al. [XWW*20] propose a large-scale dataset for TOD
named Trans10K and a novel boundary-aware segmentationmethod
termed TransLab to address the TOD problem. However, there ex-
ists a difference between TOD and GD: TOD is a multi-label seg-
mentation problem, while GD is a binary segmentation problem.
This fact indicates that TOD does not operate smoothly on the GD
task and vice versa. This is why we do not compare our method with
those TOD methods.

Glass detection. Glass regions in an image do not have a fixed
pattern since they depend on what appears behind the glass, and
the content of the glass region is the content of the background
region. This situation makes it difficult to distinguish between
the glass and the background region, even using state-of-the-art
segmentation methods. Meanwhile, other object detection methods
are also not suitable for glass detection tasks on account of the
difference between glass and other objects. Mei et al. [MYW*20]
pioneer to propose a novel gGDNet) by exploring abundant con-
textual features from a large receptive field. They utilize multiple
well-designed large-field contextual feature integration (LCFI)
modules for the precise positioning of the glass region, but this
method has poor performance in some cases where the glass
boundary region or scene is very complex or the background inside
and outside the glass is insufficient. Lin et al. [LHL21] observe that
humans often rely on identifying reflections to sense the existence
of glass and also rely on locating the boundary in order to determine
the extent of the glass. They propose a rich context aggregation
module (RCAM) to extract multi-scale boundary features and a
reflection-based refinement module (RRM) to detect reflection.
Then, they utilize two modules for glass surface detection to solve
the problem of insufficient contexts in part of the scene.

3. Methodology

Motivation. Due to the unbalanced distribution between boundary
and background pixels, only using boundary pixels for glass de-
tection will lead to larger prediction errors of pixels close to the
boundary than those far away from the glass. Therefore, the glass
boundary should diffuse itself into the glass’s interior to amplify its
influence. Conversely, the glass’s interior should diffuse itself from
the centre to the boundary to loosen its influence. Based on this ob-
servation, we propose to decouple the glass label into the interior-
diffusion component and the boundary-diffusion component, both
of which are auxiliary supervisions to enhance the overall glass de-
tection quality and boundary clearness. To make full use of the de-
coupled supervisions, we further present a three-stream network,
which consists of the proposedMIDmodules to effectively integrate
large-field contextual features for detecting glass of different sizes.
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Figure 2: Illustration of hard examples: (a) the boundary obtained
by the boundary extraction algorithm in edge guidance network
(EGNet) [ZLF*19], (b) the boundary detail, which only has two
pixels wide and (c) it is challenging to determine the pixels near
the boundary to be hard examples or not.

Also, our proposed network learns to fuse multi-modal information
to further enhance the performance.

3.1. Label decoupling

Many object detection methods pay attention to boundary informa-
tion for the enhancement of detection accuracy, but the prediction
difficulty of boundary pixels is closely related to their locations.
Therefore, it is difficult to classify the pixels near the boundary cor-
rectly, which is called ‘hard examples’ [CZXL19]. In contrast, the
consistency of interior regions makes the central region easier to
detect. Therefore, a strategy of dealing with boundary and interior
pixels differently will make the detection results more reasonable.
However, it is difficult to claim which pixels are hard examples or
not, as illustrated in Figure 2. We adopt the LD strategy proposed
by Wang et al. [ZLF*19] to decouple the original glass map into an
interior-diffusion map and a boundary-diffusion map, as shown in
Figure 3. In more detail, LD uses the simple distance transforma-
tion (DT) to convert the ground-truth glass map into a new image,
where the value of the foreground pixel is the minimum distance
from the background obtained by the distance function. Please note

Figure 3: Examples of label decoupling. In the interior-diffusion
label (c) of GT (b), pixels close to the centre of the glass have larger
values. In the boundary-diffusion label (d) of GT (b), pixels near the
boundary of the glass have larger values. The sum of (c) and (d) is
equal to (b).

that the foreground herein refers to the glass region, and the back-
ground means the remaining non-glass region.

DT calculates the distance from the nearest zero points to itself
for each non-zero point in an image. Its input is a binary graph
such as the ground truth of the image detection task, which can
be divided into two groups (i.e. the foreground I f g and the back-
ground Ibg). The original metric function is defined as f (p, q) =√
(px − qx)2 + (py − qy)2 to calculate the distance between two pix-

els, and here we modify f (p, q) to fit our approach. The new dis-
tance function is formulated as:

I′(p) =
{
minq∈Ibg f (p, q), p ∈ I f g
0, p ∈ Ibg

(1)

For the foreground pixel p, DT calculates the original distance func-
tion f (p, q) by looking for its nearest pixel q in the background
pixel, and directly sets the value to 0 for the background pixel. We
use a linear normalization function I′ = I′−min (I′ )

max (I′ )−min (I′ ) , which nor-
malizes the image generated from the new distance function. Com-
pared with the original image, the new image obtained by defining
the distance function depends not only on its foreground or the back-
ground but also on its relative position. Therefore, the new image
corresponds to the inner part of the original image, and the closer
to the centre is, the larger the pixel value will be. The boundary im-
ages obtained by subtracting the new image from the original image
can help deal with the hard examples. To remove the background in-
terference, we process the new image and the original ground truth
to generate the interior-diffusion label and boundary-diffusion label
as:

Label ⇒
{
BL = I ∗ I′
DL = I ∗ (1 − I′)

(2)

where BL means the interior-diffusion label and DL represents the
boundary-diffusion label. Thus, we decouple the original label into
two different kinds of labels, to work in learning both interior and
boundary features with different characteristics.

© 2022 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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Figure 4: Overview of the proposed GlassNet. The pre-trained ResNet-50 [HZRS16] is employed as the backbone network to extract multi-
level image features. The extracted image features are fed into the three streams. In each of the three streams, we use multi-scale interactive
dilation module (MID) to extract large-field contextual features, to obtain glass features, interior-diffusion features and boundary-diffusion
features, respectively, through supervision. The three different features are fused through an attention-based boundary-aware feature Mosaic
module (BFM) and fed themselves into the predict block to generate the final glass map.

3.2. Network overview

The overview of the proposed model is illustrated in Figure 4, which
consists of three parallel streams: an interior-diffusion stream, a
boundary-diffusion stream and a glass stream. We first feed an im-
age to the backbone network to extract multi-scale backbone fea-
tures. Then, the features of each level are fed into the three streams
supervised by the decoupled labels to generate different features.
In each stream, we use the MID to extract large-field contextual
features, then obtain the glass features, interior-diffusion features
and boundary-diffusion features for each stream. Finally, we use the
attention-based BFMmodule to integrate the boundary and interior-
diffusion features into the glass prediction maps to generate the final
glass map of the whole network. Details of the proposed approach
are described as follows.

Feature encoder. We use ResNet-50 [HZRS16] as the backbone
network to extract common multi-level image features for the three
streams as suggested elsewhere [WBZ*17, WZW*18, LHY18]. In
particular, as a backbone network, we remove the last global pooling
and fully connected layers and only use the five residual blocks. For
the sake of simplification, we represent these five blocks as fi(wi),
i ∈ {1, . . . , 5}, wherewi is the weight parameters pre-trained on Im-
ageNet [DDS*09] of the fi(·) operation, and the output of the ith
layer fi(·) is the input of fi+1(·), ∀i ∈ {1, . . . , 4}. We feed an input
image with the shape H ×W into it to generate different-scale fea-

tures denoted as EF = {EFi|i = 1, 2, 3, 4, 5} by utilizing fi(wi), i ∈
{1, . . . , 5}, i.e. EFi+1 = fi(EFi). Then, we input the different levels
of features into the three streams for processing. The features EF5
and EF4 are fed into the interior-diffusion stream decoder to roughly
locate the glass region. In order to obtain a finer glass boundary, the
features {EFi|i = 1, 2, 3, 4, 5} are fed into the boundary-diffusion
stream decoder. In addition, we utilize the features {EFi|i = 1, 2, 5}
for the glass map generation in the glass stream.

Three-stream decoder. As shown in Figure 4, we built a three-
stream network to use the LD information. We utilize a LD proce-
dure to decompose a glass label into an interior-diffusion map and a
boundary-diffusion map to supervise the model separately. Through
the supervision of these three different labels, better detection re-
sults can be obtained.

In each stream, we use a MID module to extract large-field con-
textual features. Figure 4 illustrates the detailed structure of the de-
coder. For the glass stream and the boundary-diffusion stream, we
employ the short connections [HCH*17] to merge feature maps EFi
at different CNN layers, resulting in new feature maps (denoted as
DFi). Specifically, the merged feature mapDFi at the kth CNN layer
(i = 1, . . . , 5) is computed by

DFi = Conv(Concat(MFi, . . . ,MF5)) (3)

© 2022 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

 14678659, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14441 by N

anjing U
niversity O

f A
eronautics A

nd A
stronautics (N

uaa), W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



382 C. Zheng et al. / EG LaTeX Author Guidelines

Figure 5: The structure of the multi-scale onteractive dilation
(MID) module. Conv represents a convolutional layer with a kernel
size of 3 × 3, a normalized layer, and a ReLU layer. 3 × 3 means
the convolutional kernel size, and rate represents the dilation rate
in a dilated convolution.

Then, we use MID to generate large-field contextual features MFi,
which can be formulated as:

MFi = MID(DFi) (4)

where MID(·) is the MID module. Then, we integrate the different
levels of MF through a decoder structure. In particular, we concate-
nate the output of each level in the boundary-diffusion stream to get
the final boundary map. For the interior-diffusion stream, we add
EF4 and EF5 by using the element-wise addition operation and en-
tering them into MID to generate MF. In this way, different-level
feature maps are jointly fused, which is beneficial for semantic seg-
mentation.

3.3. MID module

For glass detection, the key to accurately locate glass regions is to
aggregate a wide range of contextual features at different scales.
GDNet [MYW*20] exploits the LCFI module to efficiently extract
abundant contextual information from a large field. It utilizes con-
volutions with large kernels and dilated convolutions to enlarge the
receiving field, and spatially separable convolution to reduce the pa-
rameters of convolution with large kernels. Inspired by them, we
propose a multi-scale interactive dilation module (named as MID,
as shown in Figure 5) to efficiently aggregate different-scale con-
textual information for enhancing the glass detection performance.

Specifically, we propose to utilize dilated convolution with differ-
ent dilation rates to expand the receiving field of each pixel so that
it can obtain a wider range of contextual information. After pass-
ing the feature map into this module, the maps first pass through
a convolution layer for feature extraction at each of the branches.
Then, we use dilated convolution to extract a wide range of con-

Figure 6: Attention-based boundary-aware feature Mosaic
module.

text features. Different from LCFI [MYW*20], we use the dilation
convolution with larger dilation rates, which are set to 2, 4, 8 and
16, respectively. And an additional branch is added, which uses a
3 × 3 convolution to obtain more dense local information. Besides,
in order to reduce the parameters of the module in the whole net-
work, we remove the large kernel convolution of LCEI. Meanwhile,
we adopt Short Connections [HCH*17] to transfer the output of the
smaller receiving field branch into the other larger branch for getting
dense contextual information. Finally, we integrate the context fea-
ture maps of each branch through convolution layers and obtain the
feature map MF by utilizing an element-wise addition operation.

3.4. Attention-based BFM module

After obtaining a high-quality boundary prediction map using the
boundary-diffusion stream, we utilize a BFM module to integrate
the boundary maps into the predicted glass maps generated by
the glass stream, as shown in Figure 6. BFM first takes the pre-
dicted boundary, interior-diffusion and glass feature maps as inputs.
Through using the predicted boundary and the interior-diffusion
maps as attention maps, we integrate them into the feature maps
of the glass stream by using an element-wise product operation ⊗.
We concatenate the interior-diffusion and boundary-diffusion maps
and input them into the SE module, respectively, to enhance the
corresponding boundary- and interior-diffusion features. Here, the
SE module is an architectural unit proposed by Hu et al. [HSS18],
which is termed as the ‘Squeeze-and-Excitation’ (SE) block, that
adaptively re-calibrates channel-wise feature responses by explic-
itly modelling inter-dependencies between channels. Finally, we
add the enhanced features to the input glass feature map to generate
the final output.

3.5. Loss function

We use two different loss functions, i.e. the binary cross-entropy
(BCE) loss lbce, and the intersection over union (IoU) loss liou
[QZH*19], to supervise the network. The BCE loss is a widely used
loss function in computer vision because of its robustness:

lbce = −
∑
(x,y)

[g(x, y)log(p(x, y)) + (1 − g(x, y))log(1 − p(x, y))](5)

© 2022 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

 14678659, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14441 by N

anjing U
niversity O

f A
eronautics A

nd A
stronautics (N

uaa), W
iley O

nline L
ibrary on [02/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



C. Zheng et al. / EG LaTeX Author Guidelines 383

IoU is an important metric to evaluate object detection quality by
calculating the ratio of the intersection and union of the ‘predicted
box’ and ‘GT box’. Recently, it is widely used as the training loss:

liou = 1 −
∑H

x=1

∑W
y=1 p(x, y)g(x, y)∑H

x=1

∑W
y=1 [p(x, y) + g(x, y) − p(x, y)g(x, y)]

(6)

Therefore, the three different streams are supervised separately
by combining different losses. In the interior-diffusion stream, the
glass stream and the final output prediction maps, we adopt the BCE
and IoU losses, which can be formulated as:

Lglass =
Ng∑
k=1

[lbce(pk, gglass) + liou(pk, gglass)] (7)

Linner = lbce(pk, ginner ) + liou(pk, ginner ) (8)

Lf inal = lbce(pk, gglass) + liou(pk, gglass) (9)

where Lglass is the sum of the different levels of losses in the glass
stream, and Lf inal is the supervision loss of the final output of the
whole network. pk is the prediction map of the different branches
in the three streams. gglass is the ground-truth label, and ginner is the
interior-diffusion label decoupled by the original label. Ni and Ng
are the numbers of branches in the interior-diffusion stream and the
glass stream, respectively. Moreover, we only use the BCE loss in
the boundary-diffusion stream:

Lboundary =
Nb∑
k=1

lbce(pk, gboundary) (10)

where gboundary is the boundary-diffusion label decoupled by the
original label and Nb is the number of branches in the boundary-
diffusion stream.

Therefore, the final loss function is formulated as:

Loss = Linner + Lboundary + Lglass + Lf inal (11)

4. Experiments

4.1. Datasets and evaluation metrics

Currently, there is only a dataset available, i.e. GDD [MYW*20],
which is the first large-scale benchmark for glass detection and has
4018 mirror images with their corresponding masks. We use five
metrics widely used by other computer vision tasks to evaluate the
performance of our model and existing state-of-the-art methods.
First, we use two popular metrics, i.e. the pixel accuracy (acc) and
the intersection of union (IoU). Besides, we apply the F-measure
[AHES09] and mean absolute error (MAE) metrics from the SOD
field, which are widely adopted elsewhere [CTWH18, LYC*18,
LHY18, HCH*17]. The F-measure is the weighted harmonic mean
of precision and recall. We use the maximum F-measure (Fβ ) ver-
sion as:

Fβ = (1 + β2)Precision× Recall

beta2Precision+ Recall
(12)

where β2 is set to 0.3 as suggested in Achanta et al.[AHES09].MAE
is the mean absolute error, i.e. the mean value of the absolute error
between the prediction and the ground truth, which is defined as:

MAE = 1

H ×W

H∑
i=1

W∑
j=1

|p(i, j) − g(i, j)| (13)

where g(x, y) ∈ [0, 1] is the ground-truth label of the pixel (x, y)
and p(x, y) ∈ [0, 1] is the predicted probability of being glass. In
addition, we select the balance error rate (BER) [VHS15] from the
shadow detection field as our last metric, which can be obtained as:

BER = 100 ×
(
1 − 1

2

(
TP

Np
+ TN

Nn

))
(14)

where TP, TN, Nn and Np are the numbers of true positives, true
negatives, glass pixels and non-glass pixels, respectively.

4.2. Implementation details

We implement the proposed network GlassNet based on the Py-
Torch framework [PGM*19] and train it on the benchmark dataset
GDD. The pre-trained ResNet-50 network [HZRS16] on ImageNet
[DDS*09] is used to initialize the parameters of the backbone, and
the other parameters are initialized randomly. We train the whole
network by using the stochastic gradient descent (SGD) with a mo-
mentum of 0.9 and the weight decay of 5 × 10−4. The initial learn-
ing rate is set to 0.0001 and is adjusted by poly decay strategies
[YWP*18] with a power of 0.9. The network with a batch setting of
4 is trained on an NVIDIA GTX 1080 Ti graphics card. During test-
ing, images are adjusted to the resolution of 512 × 512 for inference
without any post-processing.

4.3. Comparison with the SOTAs

Compared methods. It only has one deep learning-based method
for glass detection from single images. Thus, we compare to
this method and other 14 state-of-the-art methods, which are
PSPNet [ZSQ*17], DenseASPP [YYZ*18], PSANet [ZZL*18],
DANet [FLT*19] and CCNet [HWH*19] chosen from the seman-
tic segmentation field, R3Net [DHZ*18], CPD [WSH19], BAS-
Net [QZH*19], EGNet [ZLF*19] and LDF [WWW*20] chosen
from the SOD field, DSC [HZF*18] and BDRAR [ZDH*18] cho-
sen from the shadow detection field, MirrorNet [YMX*19] and
PMD [LWL20] from the mirror segmentation field and GDNet
[MYW*20] used for glass detection. For a fair comparison, we re-
train all the other methods on the GDD dataset by using their pub-
licly available codes.

Quantitative comparison. We compare the proposed network
with state-of-the-art methods from the relevant fields mentioned
above, which are shown in Table 1. The first, second and third best
results are marked in bold, red and blue, respectively. Obviously,
compared with other methods in related fields, our method is better
than the SOTA methods.

Qualitative evaluation. Some prediction examples of the pro-
posed method and state-of-the-art approaches have been shown in
Figure 7. We observe that the proposed method not only highlights

© 2022 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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Figure 7: Visual comparison of our GlassNet with SOTAs on the GDD testing set.

the glass regions clearly but also well suppresses the background
noise. It can be seen that our method can accurately detect small
glass (e.g. the first four rows), large glass (e.g. the fifth to seventh
rows) and others (e.g. the eighth and ninth rows). Although GDNet
can locate these regions well, it has low detection accuracy for the
boundary regions and cannot even detect the boundary regions cor-
rectly. In contrast, our method has higher detection accuracy in the
boundary region because we use boundary information to force the
network to pay more attention to the boundary region.

4.4. Ablation studies

Table 2 demonstrates the effectiveness of each component in our
model. From the first line to the third line, we can see that both
boundary- and interior-diffusion branches can effectively improve
the performance. Moreover, the effect of the network without the
boundary-diffusion stream is worse than that without the interior-
diffusion stream, which is consistent with our observation: Bound-
aries significantly improve the detection ability, which should be
specially considered. In addition, the final detection accuracy can

also be improved by the proposed multiple mixing losses, as shown
in the 4th and 5th lines, where each row omits a loss, i.e. BCE and
IOU, respectively. Finally, w/o MID and w/o BFM, respectively, in-
dicate that we do not use any one of the two modules each time
in our network, which shows their contributions on improving the
glass detection quality. Figure 8 shows a visual example, proving
that our method successfully addresses the glass detection problem
with the help of boundaries.

4.5. Failure cases

GlassNet has two limitations, as shown in Figure 9: (1) In the case
of very large-scale glass, e.g. the area of the glass occupies more
than 95% or even 100% of the whole image, it may operate poorly
on such extreme cases, due to the lack of sufficient contextual infor-
mation; and (2) it is nearly impossible to detect the glass in the very
weak light, since under the very weak-light condition, the boundary
area of the glass and the background will share very similar proper-
ties, i.e. they are all black regions with pixel values approximating
to (0,0,0).

© 2022 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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Figure 8: Visual comparison of our GlassNet with its variants.

Table 1: Quantitative results on the GDD dataset. CRF indicates whether
CRF [KK11] is used as a post-processing step. The first, second and third
best results are marked in bold, red and blue, respectively.

Method CRF acc↑ IoU↑ Fβ ↑ MAE↓ BER↓
PSPNet[ZSQ*17] × 0.916 0.841 0.906 0.084 8.79
DenseASPP[YYZ*18] × 0.919 0.837 0.911 0.081 8.66
PSANet[ZZL*18] × 0.918 0.835 0.909 0.082 9.09
CCNet[HWH*19] × 0.915 0.843 0.904 0.085 8.63
DANet[FLT*19] × 0.911 0.842 0.901 0.089 8.96
R3Net[DHZ*18]

√
0.869 0.767 0.869 0.132 13.85

CPD[WSH19] × 0.907 0.825 0.903 0.095 8.87
BASNet[QZH*19] × 0.907 0.829 0.896 0.094 8.70
EGNet[ZLF*19] × 0.885 0.788 0.858 0.115 10.87
LDF[WWW*20] × 0.921 0.843 0.908 0.079 7.52
BDRAR[ZDH*18]

√
0.902 0.800 0.908 0.098 9.87

DSC[HZF*18] × 0.914 0.836 0.911 0.090 7.97
MirrorNet[YMX*19]

√
0.918 0.851 0.903 0.083 7.67

PMD[LWL20]
√

0.921 0.836 0.894 0.078 8.34
GDNet[MYW*20] × 0.939 0.876 0.920 0.061 5.62
GlassNet (ours) × 0.946 0.887 0.937 0.054 5.42

Table 2: Ablation study results. Best results are highlighted in bold.

Strategy acc↑ Fβ ↑ BER↓
w/o interior and boundary 0.936 0.925 6.37
w/o boundary 0.938 0.927 6.25
w/o interior 0.941 0.932 5.98
w/only BCE loss 0.937 0.928 6.31
w/o IoU loss 0.940 0.933 5.92
w/o MID 0.943 0.932 5.53
w/o BFM 0.940 0.923 5.80
Our GlassNet 0.946 0.937 5.42

5. Conclusion

In this paper, we propose a three-stream network for glass detec-
tion from single images, called GlassNet. GlassNet consists of a LD
procedure that decouples the ground truth into an interior-diffusion
label and a boundary-diffusion label, a MID module for extracting
and capturing contextual features, and a three-stream network in-
tegrating multi-scale and multi-modal information to generate the

Figure 9: Failure cases.

final prediction map. Besides, GlassNet utilizes an attention-based
BFM module to integrate multi-modal information for further im-
proving the glass detection quality. Experiments on the benchmark
datasets demonstrate that our GlassNet outperforms the state-of-the-
art methods under different evaluation metrics.
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